Adaptation of the Core CDIO Standards 3.0 to STEM Higher Education
https://doi.org/10.31992/0869-3617-2021-30-2-9-21
Abstract
It is proposed to adapt the new version of the internationally recognized standards for engineering education the Core CDIO Standards 3.0 to the programs of basic higher education in the field of technology, natural and applied sciences, as well as mathematics and computer science in the context of the evolution of STEM. The adaptation of the CDIO standards to STEM higher education creates incentives and contributes to the systematic training of specialists of different professions for coordinated teamwork in the development of high-tech products, as well as in the provision of comprehensive STEM services. Optional CDIO Standards are analyzed, which can be used selectively in STEM higher education. Adaptation of the CDIO-FCDI-FFCD triad to undergraduate, graduate and postgraduate studies in the field of science, technology, engineering and mathematics is considered as a mean for improving the system of three-cycle STEM higher education.
About the Author
A. I. ChuchalinRussian Federation
Alexander I. Chuchalin – Dr. Sc. (Engineering), Prof.
36, Lenin Av., Tomsk, 634050
References
1. Kamp, A. (2016). Engineering Education in the Rapidly Changing World: Rethinking the Vision for Higher Engineering Education. 2nd revised edition ed. TU Delft, Faculty of Aerospace Engineering. Available at: http://resolver.tudelft.nl/uuid:ae3b30e3-5380-4a07-afb5-dafd30b7b433 (accessed 12.01.2021).
2. Malmqvist, J., Hugo, R., Kjellberg, M. (2015). A Survey of CDIO Implementation Globally-Effects on Educational Quality. In: Proceedings of 11thInternational CDIO Conference. June 8–15, 2015. Chengdu, China.
3. Стратегия развития инженерного образования в Российской Федерации на период до 2020 года. Проект / А.И. Рудской, А.А. Александров, П.С. Чубик, А.И. Боровков, П.И. Романов, А.Н. Шарапов. СПб.: Изд-во Политехн. ун-та, 2017. 55 с. URL: https://mpei.ru/umo/HigherEducation/Documents/news/2018/06-03-18.pdf (дата обращения: 12.01.2021). [Rudskoy, A.I., Alexandrov, A.A., Chubik, P.S., Borovkov, A.I., Romanov, P.I., Sharapov, A.N. (2017). Development Strategy for Engineering Education in the Russian Federation for the Period up to 2020. Draft. St.-Petersburg Polytech. Univ. Publ., Saint-Peterburg, 2017, 55 p. Available at: https://mpei.ru/umo/HigherEducation/Documents/news/2018/06-03-18.pdf (accessed 12.01.2021). (In Russ., abstract in Eng.)].
4. Анисимова Т.И., Шатунова О.В., Сабирова Ф.М. STEAM-образование как инновационная технология для Индустрии 4.0 // Научный диалог. 2018. № 11. С. 322–332. [Anisimova, T.I., Shatunova, O.V., Sabirova F.M. (2018). STEAM Education as an Innovative Technology for Industry 4.0. Nauchnyi dialog = Scientific Dialogue. No. 11, pp. 322-332.] (In Russ., abstract in Eng.)].
5. Фролов А.В. Реформа инновационной системы США: от STEM к STEAM-образованию // Alma mater. Вестник высшей школы. 2013. № 1. С. 101–105. [Frolov, A.V. (2013). Reform of the US Innovation System: From STEM to STEAM Education. Alma mater (Vestnik vysshei shkoly) = Alma mater (Higher Education Herald). No. 1, pp. 101-105. (In Russ., abstract in Eng.)].
6. Langie, G., Pinxten, M. (2018). The Transition to STEM Higher Education: Policy Recommendations. International Journal of Engineering Pedagogy. Vol 8, no. 2, pp. 10-13, doi: https://doi.org/10.3991/ijep.v8i2.8286
7. Vasilchenko, A. (2017). Self-Flipped Teaching & Learning for STEM in Higher Education. In: Adjunct Proceedings of 15th European Conference on Computer-Supported Cooperative Work, Series: Reports of the European Society for Socially Embedded Technologies. Vol. 1, no. 4, doi: http://dx.doi.org/10.18420/ecscw2017_dc7
8. Borrego, M., Henderson, C. (2014). Increasing the Use of Evidence-Based Teaching in STEM Higher Education: A Comparison of Eight Change Strategies. Journal of Engineering Education. Vol. 103, no. 2, pp. 220-252, doi: https://doi.org/10.1002/jee.20040
9. Kärkkäinen, K., Vincent-Lancrin, S. (2013). Sparking Innovation in STEM Education with Technology and Collaboration: A Case Study of the HP Catalyst Initiative. OECD Education Working Papers, No. 91, Paris: OECD Publishing, doi: http://dx.doi.org/10.1787/5k480sj9k442-en
10. Love Stowell S.M., Churchill, A.S., Hund, A.K. et al. (2015). Transforming Graduate Training in STEM Education. Bulletin of the Ecological Society of America. Vol. 96, no. 2, pp. 317-323, doi: https://doi.org/10.1890/0012-9623-96.2.317
11. Türk, N., Kalayci, N., Yamak, H. (2018). New Trends in Higher Education in the Globalizing World: STEM in Teacher Education. Universal Journal of Educational Research. Vol. 6, no. 6, pp. 1286-1304, doi: 10.13189/ujer.2018.060620
12. Brodeur, B., Crawley, E. (2005). Program Evaluation Aligned with the CDIO Standards. In: Proceedings of the 2005 ASEE Conference. Portland, Oregon, doi: 10.18260/1-2--15474
13. Crawley, E., Malmqvist, J., Östlund, S., Brodeur, D. (2007). Rethinking Engineering Education – The CDIO Approach. 1st ed., Springer-Verlag, New York, USA, doi: 10.1007/978-0-387-38290-6
14. Crawley, E.F., Malmqvist, J., Östlund, S., Brodeur, D., Edström, K. (2014). Rethinking Engineering Education – The CDIO Approach. 2nd ed., Springer International Publishing, doi: 10.1007/978-3-319-05561-9
15. Переосмысление инженерного образования. Подход CDIO / Э.Ф. Кроули, Й. Малмквист, С. Остлунд, Д. Р. Бродер, К. Эдстрем / Пер. с англ. С. Рыбушкиной; под науч. ред. А. Чучалина. М.: Изд. дом ВШЭ, 2015. 504 с. [Russian edition: Crawley, E., Malmqvist, J., Östlund, S., Brodeur, D., Edström, K. Pereosmyslenie inzhenernogo obrazovaniya = Rethinking Engineering Education, the CDIO Approach. Transl. by S. Ryabushkina, ed. by A. Chuchalin, Moscow: HSE Publ., 2015, 504 p.]
16. Malmqvist, J., Edström, K., Hugo, R. (2017). A Proposal for Introducing Optional CDIO Standards. Proceedings of the 13th International CDIO Conference. Calgary, Canada: University of Calgary. Canada, June 18-22, 2017. Available at: http://www.cdio.org/files/document/cdio2017/42/42_Final_PDF.pdf (accessed 12.01.2021).
17. Malmqvist, J., Wedel, M., Lundqvist, U., Edström, K., et al. (2019). Towards CDIO Standards 3.0. Proceedings of the 15th International CDIO Conference, Aarhus, Denmark. Available at: http://www.cdio.org/files/document/file/125. pdf (accessed 12.01.2021).
18. Malmqvist, J., Edström, K., Rosén, A. (2020). CDIO Standards 3.0 – Updates to the Core CDIO Standards. Proceedings of the 16th International CDIO Conference, Chalmers University of Technology, Gothenburg, Sweden. Available at: http://kth.diva-portal.org/smash/get/diva2:1469617/FULLTEXT02.pdf (accessed 12.01.2021).
19. Malmqvist, J., Edström, K., Rosén, A. Hugo, R., Campbell, D. (2020). Optional CDIO Standards: Sustainable Development, Simulation-based Mathematics, Engineering Entrepreneurship, Internationalization & Mobility. Proceedings of the 16th International CDIO Conference, Chalmers University of Technology, Gothenburg, Sweden. g, Sweden, 8-10 June 2020. Vol. 1, pp. 48-59. Available at: http://cdio.org/files/document/file/CDIO_Proceedings_2020_Malmqvist.pdf (accessed 12.01.2021).
20. Chuchalin, A., Daneikina, N., Fortin, C. (2016). Application of CDIO Approach to Engineering BEng, MSc and PhD Programs Design and Implementation. Proceedings of the 12th International CDIO Conference, Turku University of Applied Sciences, Turku, Finland, June 12-16, 2016. Available at: http://www.cdio.org/files/document/cdio2016/165/165_Paper_PDF.pdf (accessed 12.01.2021).
21. Chuchalin, A. (2018). Three-Cycle Engineering Education Based on the CDIO-FCDI-FFCD Triad. In: Clark, R., Hussmann, P. M., Järvinen, H.-M., Murphy, M. (Eds), Vigild, M. (2018). Proceedings of the 46th SEFI Annual Conference: Creativity, Innovation and Entrepreneurship for Engineering Education Excellence. European Society for Engineering Education SEFI, pp. 682-690.