Как привлечь девушек в STEM и помочь им добиться успеха: обзор практик преодоления гендерных стереотипов
https://doi.org/10.31992/0869-3617-2022-31-11-63-89
Аннотация
Гендерный дисбаланс среди студентов, получающих образование в области STEM (Science, Technology, Engineering and Mathematics – наука, технологии, инженерия и математика), является общемировой проблемой, приводящей к негативным социальным и экономическим последствиям. Несмотря на распространённый «миф о гендерном равенстве» в России, данная проблема является актуальной и для нашей страны. Доля юношей на большинстве направлений STEM в российских вузах существенно превышает долю девушек, в особенности на направлениях инженерно-технического профиля. Статья нацелена на анализ имеющегося опыта борьбы с гендерными стереотипами на образовательных программах в области STEM. В ней представлен обзор семи типов практик: 1) информирование девушек о гендерных стереотипах и их негативных последствиях; 2) практики, направленные на развитие «мышления роста»; 3) воздействие через «ролевые модели» и формирование сетей дружбы по интересу в STEM; 4) управление композицией класса; 5) организация активного обучения; 6) акцент на общественной пользе профессий в области STEM; 7) создание позитивного климата через работу со стереотипами преподавателей и студентов мужского пола. В последней части статьи обсуждается применимость данных практик в российском образовательном контексте.
Ключевые слова
Об авторах
Н. Г. МалошонокРоссия
Малошонок Наталья Геннадьевна – канд. социол. наук, ст. науч. сотрудник Центра социологии высшего образования Института образования
Researcher ID: K-2877-2015
101000, г. Москва, Потаповский пер., 16, стр. 10
И. А. Щеглова
Россия
Щеглова Ирина Александровна – канд. пед. наук, мл. науч. сотрудник Центра социологии высшего образования Института образования
Researcher ID: Q-9272- 2016
101000, г. Москва, Потаповский пер. 16, стр. 10
К. А. Вилкова
Россия
Вилкова Ксения Александровна – канд. наук об образовании, мл. науч. сотрудник Центра социологии высшего образования Института образования
Researcher ID: Y-5455-2018
101000, г. Москва, Потаповский пер. 16, стр. 10
М. О. Абрамова
Россия
Абрамова Мария Олеговна – канд филос. наук, директор Центра социологии образования Института образования
Researcher ID: K-7360-2017
634050, г. Томск, проспект Ленина, 34а
Список литературы
1. Riegle-Crumb C., Farkas G., Muller C. The role of gender and friendship in advanced course taking // Sociology of Education. 2006. Vol. 79. No. 3. Р. 206–228. DOI: 10.1177/003804070607900302
2. Farrell L., McHugh L. Examining gender-STEM bias among STEM and non-STEM students using the Implicit Relational Assessment Procedure (IRAP) // Journal of Contextual Behavioral Science. 2017. Vol. 6. No. 1. P. 80–90. DOI: 10.1016/j.jcbs.2017.02.001
3. Ertl B., Luttenberger S., Paechter M. The impact of gender stereotypes on the self-concept of female students in STEM subjects with an under-representation of females // Frontiers in psychology. 2017. Vol. 8 (703). DOI: 10.3389/fpsyg.2017.00703
4. Малошонок Н.Г., Щеглова И.А. Роль гендерных стереотипов в отсеве студентов инженерно-технического профиля // Мониторинг общественного мнения: Экономические и социальные перемены. 2020. № 2. С. 273–292. DOI: 10.14515/monitoring.2020.2.945
5. Bahr P.R., Jackson G., McNaughtan J., Oster M., Gross J. Unrealized potential: Community college pathways to STEM baccalaureate degrees // The Journal of Higher Education. 2017. Vol. 88. No. 3. P. 430–478. DOI: 10.1080/00221546.2016.1257313
6. Ferrant G., Kolev A. Does gender discrimination in social institutions matter for long-term growth? : Cross-country evidence // OECD Development Centre Working Papers. 2016. No. 330. OECD Publishing, Paris. DOI: 10.1787/5jm2hz8dgls6-en
7. Rudakov V., Kiryushina M., Figueiredo H., Teixeira P.N. Early career gender wage gaps among university graduates in Russia // International Journal of Manpower (ahead-of-print). 2022. DOI: 10.1108/ijm-03-2021-0206
8. Fox M.F., Sonnert G., Nikiforova I. Programs for Undergraduate Women in Science and Engineering: Issues, Problems, and Solutions // Gender & Society. 2011. Vol. 25. No. 5. Р. 589–615. DOI: 10.1177/0891243211416809
9. O’Dea R.E., Lagisz M., Jennions M.D., Nakagawa S. Gender differences in individual variation in academic grades fail to fit expected patterns for STEM // Nature Communications. 2018. Vol. 9. Article no. 3777. DOI: 10.1038/s41467-018-06292-0
10. Stoet G., Geary D.C. The Gender-Equality Paradox in Science, Technology, Engineering, and Mathematics Education // Psychological Science. 2018. Vol. 29. No. 4. P. 581–593. DOI: 10.1177/0956797617741719
11. Ceci S.J., Williams W.M. Sex differences in math-intensive fields // Current Directions in Psychological Science. 2010. Vol. 19. No. 5. P. 275–279. DOI: 10.1177/0963721410383241
12. Замятнина Е.С. Гендерные различия при выборе специальности в вузе в современной России // Мониторинг общественного мнения: Экономические и социальные перемены. 2017. № 3. С. 163–176. DOI: 10.14515/monitoring.2017.3.11
13. Franceschini G., Galli S., Chiesi F., Primi C. Implicit gender-math stereotype and women’s susceptibility to stereotype threat and stereotype lift // Learning and Individual Differences. 2014. Vol. 32. P. 273–277. DOI: 10.1016/j.lindif.2014.03.020
14. Schuster C., Martiny S.E. Not feeling good in STEM: Effects of stereotype activation and anticipated effect on women’s career aspirations // Sex Roles: A Journal of Research. 2017. Vol. 76. No. 1–2. P. 40–55. DOI: 10.1007/s11199-016-0665-3
15. Bloodhart B., Balgopal M.M., Casper A.M.A., Sample McMeeking L.B., Fischer E.V. Outperforming yet undervalued: Undergraduate women in STEM // PLoS ONE. 2020. Vol. 15. No. 6. DOI: 10.1371/journal.pone.0234685
16. Spencer S.J., Steele C.M., Quinn D.M. Stereotype threat and women’s math performance // Journal of Experimental Social Psychology. 1999. Vol. 35. No. 1. P. 4–28. DOI: 10.1006/jesp.1998.1373
17. Хасбулатова О.А., Смирнова И.Н. Гендерные стереотипы в цифровом обществе: современные тенденции // Народонаселение. 2020. T. 23. № 2. С. 161–171. DOI: 10.19181/population.2020.23.2.14
18. Савинская О.Б., Мхитарян Т.А. Почему девочки не идут в кружки робототехники: гендерные стереотипы и выбор родителей // Женщины в профессиях XXI века: тенденции, проблемы, перспективы: Материалы Всероссийской научной конференции с международным участием. Иваново, 03.03.2020. М. : Ивановский гос. ун-т, 2020. С. 61–66. EDN GVCCHQ.
19. Савинская О.Б., Лебедева Н.В. Почему женщины уходят из STEM: роль стереотипов // Женщина в российском обществе. 2020. № 2. С. 62–75. DOI: 10.21064/WinRS.2020.2.6
20. Антощук И.А. Продвигаясь по «трубе» STEM: систематический обзор литературы по гендерному неравенству в российской инженерной профессии // Мониторинг общественного мнения: экономические и социальные перемены. 2021. № 3. С. 57–87. DOI: 10.14515/monitoring.2021.3.1912
21. Vincent-Lancrin S. The reversal of gender inequalities in higher education: An on-going trend // Higher Education to 2030. Paris: OECD Publishing. 2008. P. 265–298. DOI: 10.1787/9789264040663-11-en
22. Promising Practices for Addressing the Under-representation of Women in Science, Engineering, and Medicine: Opening Doors // National Academies of Sciences, Engineering, and Medicine. Washington (DC): The National Academies Press, 2020. DOI: 10.17226/25585
23. Weisgram E.S., Bigler R.S. Effects of learning about gender discrimination on adolescent girls’ attitudes towards and interest in science // Psychology of Women Quarterly. 2007. Vol. 31. No. 3. P. 262–269. DOI: 10.1111/j.1471-6402.2007.00369.x
24. Lee J., Lee H.J., Song J., Bong M. Enhancing children’s math motivation with a joint intervention on mindset and gender stereotypes // Learning and Instruction. 2021. Vol. 73. Article no. 101416. DOI: 10.1016/j.learninstruc.2020.101416
25. Jansen N., Joukes G. Long Term, Interrelated Interventions to Increase Women’s Participation in STEM in the Netherlands // International Journal of Gender, Science and Technology. 2013. Vol. 5. No. 3. P. 306–316. URL: https://genderandset.open.ac.uk/index.php/genderandset/article/view/314 (дата обращения: 01.05.2022).
26. Lenton A.P., Bruder M., Sedikides C. A meta-analysis on the malleability of automatic gender stereotypes // Psychology of Women Quarterly. 2009. Vol. 33. No. 2. P. 183–196. DOI: 10.1111/j.1471-6402.2009.01488.x
27. Murphy T.E., Gaughan M., Hume R., Moore S.G. Jr. College graduation rates for minority students in a selective technical university: Will participation in a summer bridge program contribute to success? // Educational evaluation and policy analysis. 2010. Vol. 32. No. 1. P. 70–83. DOI: 10.3102/0162373709360064
28. Orosz G., Péter-Szarka S., Bőthe B., Tóth-Király I., Berger R.. How not to do a mindset intervention: Learning from a mindset intervention among students with good grades // Frontiers in Psychology. 2017. Vol. 8 (311). P. 1–11. DOI: 10.3389/fpsyg.2017.00311
29. Dasgupta N., McManus Scircle M., Hunsinger M. Female peers in small work groups enhance women’s motivation, verbal participation, and career aspirations in engineering // Proceedings of the National Academy of Sciences. 2015. Vol. 112. No. 16. P. 4988–4993. DOI: 10.1073/pnas.1422822112
30. Lewis N.A.Jr., Sekaquaptewa D., Meadows L.A. Modeling gender counter-stereotypic group behavior: A brief video intervention reduces participation gender gaps on STEM teams // Social Psychology of Education. 2019. Vol. 22. No. 5. Р. 557–577. DOI: 10.1007/s11218-019-09489-3
31. Belanger A.L., Diekman A.B., Steinberg M. Leveraging communal experiences in the curriculum: Increasing interest in pursuing engineering by changing stereotypic expectations // Journal of Applied Social Psychology. 2017. Vol. 47. No. 6. P. 305–319, DOI: 10.1111/jasp.12438
32. Zhao F., Zhang Y., Alterman V., Zhang B., Yu G. Can math-gender stereotypes be reduced? A theory-based intervention program with adolescent girls // Current Psychology. 2018. Vol. 37. No. 3. P. 612–624. DOI: 10.1007/S12144-016-9543-Y
33. Le H., Robbins S.B., Westrick P.A. Predicting student enrollment and persistence in college STEM fields using an expanded PE fit framework: A large-scale multilevel study // Journal of Applied Psychology. 2014. Vol. 99. No. 5. P. 915–947. DOI: 10.1037/a0035998
34. Goy S.C., Wong Y.L., Low W.Y., Noor S.N.M., Fazli-Khalaf Z., Onyeneho N., Daniel E., Azizan S.A., Hasbullah M., GinikaUzoigwe A. Swimming against the tide in STEM education and gender equality: A problem of recruitment or retention in Malaysia // Studies in Higher Education. 2018. Vol. 43. No. 11. P. 1793–1809. DOI: 10.1080/03075079.2016.1277383
35. Johns M., Schmader T., Martens A. Knowing is half the battle: Teaching stereotype threat as a means of improving women’s math performance // Psychological Science. 2005. Vol. 16. No. 3. P. 175–179. DOI: 10.1111/j.0956-7976.2005.00799.x
36. Reilly D., Neumann D.L., Andrews G. Gender Differences in Self-Estimated Intelligence: Exploring the Male Hubris, Female Humility Problem // Frontiers in Psychology. 2022. Vol. 13. Article no. 812483. DOI: 10.3389/fpsyg.2022.812483
37. McMullin J.A., Cairney J. Self-esteem and the intersection of age, class, and gender // Journal of aging studies. 2004. Vol. 18. No. 1. P. 75–90. DOI: 10.1016/J.JAGING.2003.09.006
38. Steele C.M., Aronson J. Stereotype threat and the intellectual test performance of African Americans // Journal of personality and social psychology. 1995. Vol. 69 (5). P. 797–811. DOI: 10.1037//0022-3514.69.5.797
39. Shapiro J.R., Williams A.M. The role of stereotype threats in undermining girls’ and women’s performance and interest in STEM fields // Sex roles: A Journal of Research. 2012. Vol. 66. P. 175–183. DOI: 10.1007/S11199-011-0051-0
40. Dweck C.S., Yeager D.S. Mindsets: A view from two eras // Perspectives on Psychological science. 2019. Vol. 14. No. 3. P. 481–496. DOI: 10.1177/1745691618804166
41. Lin-Siegler X., Dweck C.S., Cohen G.L. Instructional interventions that motivate classroom learning // Journal of Educational Psychology. 2016. Vol. 108. No. 3. P. 295–299. DOI: 10.1037/EDU0000124
42. Blackwell L.S., Trzesniewski K.H., Dweck C.S. Implicit theories of intelligence predict achievement across an adolescent transition: A longitudinal study and an intervention // Child development. 2007. Vol. 78. No. 1. P. 246–263. DOI: 10.1111/j.1467-8624.2007.00995.x
43. Casad B.J., Oyler D.L., Sullivan E.T., Mc-Clellan E.M., Tierney D.N., Anderson D.A., Greeley P.A., Fague M.A., Flammang B.J. Wise psychological interventions to improve gender and racial equality in STEM // Group Processes & Intergroup Relations. 2018. Vol. 21. No. 5. P. 767–787. DOI: 10.1177/1368430218767034
44. Burnette J.L., Russell M.V., Hoyt C.L., Orvidas K., Widman L. An online growth mindset intervention in a sample of rural adolescent girls // British Journal of Educational Psychology. 2018. Vol. 88. No. 3. P. 428–445. DOI: 10.1111/bjep.12192
45. Good C., Aronson J., Inzlicht M. Improving adolescents’ standardized test performance: An intervention to reduce the effects of stereotype threat // Applied Developmental Psychology. 2003. Vol. 24. No. 6. P. 645–662. DOI: 10.1016/j.appdev.2003.09.002
46. Nallapothula D., Lozano J.B., Han S., Herrera C., Sayson H.W., Levis-Fitzgerald M., Maloy J. M-LoCUS: A scalable intervention enhances growth mindset and internal locus of control in undergraduate students in STEM // Microbiology & biology education. 2020. Vol. 21. No. 2. DOI: 10.1128/jmbe.v21i2.1987
47. Samuel T.S., Buttet S., Warner J. “I Can Math, Too!”: Reducing Math Anxiety in STEM-Related Courses Using a Combined Mindfulness and Growth Mindset Approach (MAGMA) in the Classroom // Community College Journal of Research and Practice. 2022. P. 1–14. DOI: 10.1080/10668926.2022.2050843
48. Hacisalihoglu G., Stephens D., Stephens S., Johnson L., Edington M. Enhancing undergraduate student success in STEM fields through growth-mindset and grit // Education Sciences. 2020. Vol. 10. No. 10. P. 279. DOI: 10.3390/educ-sci10100279
49. Kim A.Y., Sinatra G.M., Seyranian V. Developing a STEM identity among young women: A social identity perspective // Review of Educational Research. 2018. Vol. 88. No. 4. P. 589–625. DOI: 10.3102/0034654318779957
50. Murphy M.C., Steele C.M., Gross J.J. Signaling threat: How situational cues affect women in math, science, and engineering settings // Psychological science. 2007. Vol. 18. No. 10. P. 879–885. DOI: 10.1111/j.1467-9280.2007.01995.x
51. Cheryan S., Master A., Meltzoff A.N. Cultural Stereotypes as gatekeepers: Increasing girls’ interest in computer science and engineering by diversifying stereotypes // Frontiers in Psychology. 2015. Vol. 6. Article no. 49. DOI: 10.3389/fpsyg.2015.00049
52. Prieto-Rodriguez E., Sincock K., Blackmore K. STEM initiatives matter: Results from a systematic review of secondary school interventions for girls // International Journal of Science Education. 2020. Vol. 42. No. 7. P. 1144–1161. DOI: 10.1080/09500693.2020.1749909
53. Ivey S.S., Palazolo P.J. Girls Experiencing Engineering: Evolution and Impact of a Single-Gender Outreach Program // 2011 ASEE Annual Conference & Exposition. Vancouver, BC, 2011. DOI: 10.18260/1-2-18026
54. Young D.M., Rudman L.A., Buettner H.M., McLean M.C. The influence of female role models on women’s implicit science cognitions // Psychology of Women Quarterly. 2013. Vol. 37. No. 3. P. 283–292. DOI: 10.1177/0361684313482109
55. Markus H.R., Kitayama S. Cultures and selves: A cycle of mutual constitution // Perspectives on Psychological Science. 2010. Vol. 5. No. 4. P. 420–430. DOI: 10.1177/1745691610375557
56. Falco L.D., Summers J.J. Improving career decision self-efficacy and STEM self-efficacy in high school girls: Evaluation of an intervention // Journal of Career Development. 2019. Vol. 46. No. 1. P. 62–76. DOI: 10.1177/0894845317721651
57. Leaper C., Farkas T., Brown C.S. Adolescent girls’ experiences and gender-related beliefs in relation to their motivation in math/science and English // Journal of youth and adolescence. 2012. Vol. 41. P. 268–282. DOI: 10.1007/s10964-011-9693-z
58. Robnett R.D., Leaper C. Friendship groups, personal motivation, and gender in relation to high school students’ STEM career interest // Journal of Research on Adolescence. 2013. Vol. 23. No. 4. P. 652–664. DOI: 10.1111/JORA.12013
59. Leaper C. Do I belong? Gender, peer groups, and STEM achievement // International Journal of Gender, Science and Technology. 2015. Vol. 7. No. 2. P. 166–179. URL: https://genderandset.open.ac.uk/index.php/genderandset/article/view/405 (дата обращения: 01.05.2022).
60. Paluck E.L., Green D.P. Prejudice reduction: What works? A review and assessment of research and practice // Annual Review of Psychology. 2009. Vol. 60. P. 339–367. DOI: 10.1146/annurev.psych.60.110707.163607
61. Pettigrew T.F., Tropp L.R. A meta-analytic test of intergroup contact theory // Journal of Personality and Social Psychology. 2006. Vol. 90. No. 5. P. 751–783. DOI: 10.1037/0022-3514.90.5.751
62. Inzlicht M., Ben-Zeev T. A threatening intellectual environment: Why females are susceptible to experiencing problem-solving deficits in the presence of males // Psychological Science. 2000. Vol. 11. No. 5. P. 365–371. DOI: 10.1111/1467-9280.00272
63. Springer L., Stanne M.E., Donovan S.S. Effects of small-group learning on undergraduates in science, mathematics, engineering, and technology: A meta-analysis // Review of educational research. 1999. Vol. 69. No. 1. P. 21–51. DOI: 10.3102/00346543069001021
64. Bailey E.G., Greenall R.F., Baek D.M., Morris C., Nelson N., Quirante T.M., Rice N.S., Rose S., Williams K.R. Female in-class participation and performance increase with more female peers and/or a female instructor in life sciences courses // CBE–Life Sciences Education. 2020. Vol. 19. No. 3. DOI: 10.1187/cbe.19-12-0266
65. Ballen C J., Aguillon S.M., Awwad A., Bjune A.E., Challou D. et al. Smaller Classes Promote Equitable Student Participation in STEM // Bio-Science. 2019. Vol. 69. No. 8. P. 669–680. DOI: 10.1093/biosci/biz069
66. Rowe M.B. Wait-time and rewards as instructional variables, their influence on language, logic, and fate control. Part 1: Wait time // Journal of Research in Science Teaching. 1974. Vol. 11. No. 2. P. 81–94. URL: https://onlinelibrary.wiley.com/doi/10.1002/tea.3660110202 (дата обращения: 01.05.2022).
67. Dahlerup D. From a small to a large minority: Women in Scandinavian politics // Scandinavian Political Studies. 1988. Vol. 11. No. 4. P. 275–298, DOI: 10.1111/J.1467-9477.1988.TB00372.X
68. Gross D., Pietri E.S., Anderson G., Moyano-Camihort K., Graham M.J. Increased preclass preparation underlies student outcome improvement in the flipped classroom // CBE–Life Sciences Education. 2015. Vol. 14. No. 4. DOI: 10.1187/cbe.15-02-0040
69. Latulipe C., Rorrer A., Long B. Longitudinal data on flipped class effects on performance in CS1 and retention after CS1 // SIGCSE ‘18: Proceedings of the 49th ACM Technical Symposium on Computer Science Education. 2018. P. 411– 416. DOI: 10.1145/3159450.3159518
70. Hartikainen S., Rintala H., Pylväs L., Nokelainen P. The Concept of Active Learning and the Measurement of Learning Outcomes: A Review of Research in Engineering Higher Education // Education Sciences. 2019. Vol. 9. No. 4. P. 276. DOI: 10.3390/educsci9040276
71. Børte K., Nesje K., Lillejord S. Barriers to student active learning in higher education // Teaching in Higher Education. 2020. DOI: 10.1080/13562517.2020.1839746
72. Handelsman J., Ebert-May D., Beichner R., Bruns P., Chang A., DeHaan R., Gentile J., Lauffer S., Stewart J., Tilghman S.M., Wood W.B. Scientific Teaching // Science. 2007. Vol. 304. No. 5670. P. 521–522. URL: http://www.jstor.org/stable/3836701 (дата обращения: 01.05.2022).
73. Freeman S., Eddy S.L., McDonough M., Smith M.K., Okoroafor N., Jordt H., Wenderoth M.P. Active learning increases student performance in science, engineering, and mathematics // Proceedings of the National Academy of Sciences of the United States of America. 2014. Vol. 111 (23). Р. 8410–8415. DOI: 10.1073/pnas.131903011
74. Horwitz S., Rodger S.H., Biggers M., Binkley D., Frantz C.K., Gundermann D., et al. Using peer-led team learning to increase participation and success of under-represented groups in introductory computer science // ACM SIGCSE Bulletin. 2009. Vol. 41. No. 1. Р. 163–167. DOI: 10.1145/1539024.1508925
75. Dennehy T.C., Dasgupta N. Female peer mentors early in college increase women’s positive academic experiences and retention in engineering // Proceedings of the National Academy of Sciences of the United States of America. 2017. Vol. 114 (23). Р. 5964–5969. DOI: 10.1073/pnas.1613117114
76. Lyman F.T. The responsive classroom discussion: The inclusion of all students // A.S. Anderson (Ed.). Mainstreaming Digest. College Park : University of Maryland Press, 1981. P. 109–113.
77. Tanner K.D. Talking to learn: Why biology students should be talking in classrooms and how to make it happen // CBE–Life Sciences Education. 2009. Vol. 8. No. 2. P. 89–94. DOI: 10.1187/cbe.09-03-0021
78. Aguillon S.M., Siegmund G.-F., Petipas R.H., Drake A.G., Cotner S., Ballen C.J. Gender differences in student participation in an active-learning classroom // CBE–Life Sciences Education. 2020. Vol. 19. No. 2. Article no. 12. DOI: 10.1187/cbe.19-03-0048
79. Ernest J.B., Reinholz D.L., Shah N. Hidden competence: Women’s mathematical participation in public and private classroom spaces // Educational Studies in Mathematics. 2019. Vol. 102. P. 153–172. DOI: 10.1007/s10649-019-09910-w
80. Diekman A.B., Steinberg M., Brown E.R., Belanger A.L., Clark E.K. A goal congruity model of role entry, engagement, and exit: Understanding communal goal processes in STEM gender gaps // Personality and social psychology review. 2017. Vol. 21. No. 2. P. 142–175. DOI: 10.1177/1088868316642141
81. Pöhlmann K. Agency- and communion-orientation in life goals: Impacts on goal pursuit strategies and psychological well-being // Life goals and well-being: Towards a positive psychology of human striving. Seattle, 2001. P. 68–84. URL: https://psycnet.apa.org/record/2001-01629-004 (дата обращения: 01.05.2022).
82. Roberts B.W., Robins R.W. Broad dispositions, broad aspirations: The intersection of personality traits and major life goals // Personality and Social Psychology Bulletin. 2000. Vol. 26. No. 10. Р. 1284–1296. DOI: 10.1177/0146167200262009
83. Boucher K.L., Fuesting M.A., Diekman A.B., Murphy M.C. Can I work with and help others in this field? How communal goals influence interest and participation in STEM fields // Frontiers in Psychology. 2017. Vol. 8. Article no. 901. DOI: 10.3389/fpsyg.2017.00901
84. Diekman A.B., Clark E.K., Johnston A.M., Brown E.R., Steinberg M. Malleability in communal goals and beliefs influences attraction to stem careers: Evidence for a goal congruity perspective // Journal of Personality and Social Psychology. 2011. Vol. 101. No. 5. P. 902–918. DOI: 10.1037/a0025199
85. Fuesting M.A., Diekman A.B., Bautista N. Integrating communal content into science lessons: An investigation of the beliefs and attitudes of preservice teachers // School Science and Mathematics. 2021. Vol. 121. No. 3. Р. 154–163. DOI: 10.1111/ssm.12457
86. Brown E.R., Smith J.L., Thoman D.B., Allen J.M., Muragishi G. From bench to bedside: A communal utility value intervention to enhance students’ biomedical science motivation // Journal of Educational Psychology. 2015. Vol. 107. No. 4. Р. 1116–1135. DOI: 10.1037/edu0000033
87. Fuesting M.A., Diekman A.B. Not by success alone: Role models provide pathways to communal opportunities in STEM // Personality and Social Psychology Bulletin. 2017. Vol. 43. No. 2. Р. 163–176. DOI: 10.1177/0146167216678857
88. Barthelemy R.S., McCormick M., Henderson C. Gender discrimination in physics and astronomy: Graduate student experiences of sexism and gender microaggressions // Physical Review Special Topics: Physics Education Research. 2016. Vol. 12. DOI: 10.1103/PhysRevPhysEducRes.12.020119
89. Stentiford L.J. “You can tell which ones are the laddy lads”: Young women’s accounts of the engineering classroom at a high-performing English university // Journal of Gender Studies. 2019. Vol. 28. No. 2. Р. 218–230. DOI: 10.1080/09589236.2018.1423957
90. Rattan A., Good C., Dweck C.S. “It’s ok – Not everyone can be good at math”: Instructors with an entity theory comfort (and demotivate) students // Journal of Experimental Social Psychology. 2012. Vol. 48. No. 3. Р. 731–737. DOI: 10.1016/j.jesp.2011.12.012
91. Johnson I.R., Pietri E.S., Fullilove F., Mowrer S. Exploring identity-safety cues and ally-ship among black women students in STEM environments // Psychology of Women Quarterly. 2019. Vol. 43. No. 2. P. 131–150. DOI: 10.1177/0361684319830926
92. Johnson I.R., Pietri E.S. Ally endorsement: Exploring allyship cues to promote perceptions of allyship and positive STEM beliefs among White female students // Group Processes & Intergroup Relations. 2022. DOI: 10.1177/13684302221080467
93. Chaney K.E., Sanchez D.T., Remedios J.D. We are in this together: How the presence of similarly stereotyped allies buffer against identity threat // Journal of Experimental Social Psychology. 2018. Vol. 79. P. 410–422. DOI: 10.1016/J.JESP.2018.09.005
94. Killpack T.L., Melón L.C. Toward inclusive STEM classrooms: What personal role do faculty play? // CBE–Life Sciences Education. 2016. Vol. 15. No. 3. DOI: 10.1187/cbe.16-01-0020
95. Charlesworth T.E., Banaji M.R. Gender in science, technology, engineering, and mathematics: Issues, causes, solutions // Journal of Neuroscience. 2019. Vol. 39. No. 37. Р. 7228–7243. DOI: 10.1523/JNEUROSCI.0475-18.2019
96. Carnes M., Devine P.G., Manwell L.B., Byars-Winston A., Fine E., Ford C.E., et al. The effect of an intervention to break the gender bias habit for faculty at one institution: a cluster randomized, controlled trial // Academic Medicine: Journal of the Association of American Medical Colleges. 2015. Vol. 90. No. 2. P. 221–230. DOI: 10.1097/ACM.0000000000000552
97. Isaac C., Manwell L.B., Devine P.G., Ford C., Sheridan J.T., Byars-Winston A., Fine E., Carnes M. Difficult dialogues: Negotiating faculty responses to a gender bias literacy training program // Qualitative report (Online). 2016. Vol. 21. No. 7. DOI: 10.46743/2160-3715/2016.2205
98. Moss-Racusin C.A., Pietri E.S., Hennes E.P., Dovidio J.F., Brescoll V.L., Roussos G., Handelsman J. Reducing STEM gender bias with VIDS (video interventions for diversity in STEM) // Journal of Experimental Psychology: Applied. 2018. Vol. 24. No. 2. Р. 236–260. DOI: 10.1037/xap0000144
99. Meadows L.A., Sekaquaptewa D. The Effect of Skewed Gender Composition on Student Participation in Undergraduate Engineering Project Teams // ASEE Annual Conference & Exposition. 2011. DOI: 10.18260/1-2--18957
100. Cheryan S., Ziegler S.A., Montoya A.K., Jiang L. Why are some STEM fields more gender balanced than others? // Psychological bulletin. 2017. Vol. 143. No. 1. P. 1–35. DOI: 10.1037/bul0000052
101. Lord S.M., Layton R.A., Ohland M.W. Trajectories of electrical engineering and computer engineering students by race and gender // Education, IEEE Transactions on Education. 2011. Vol. 54. No. 4. P. 610–618. DOI: 10.1109/TE.2010.2100398
102. Панина С.В. Гендерный аспект профессионального самоопределения учащейся молодёжи // Общество, социология, психология, педагогика. 2018. № 1. DOI: 10.24158/spp.2018.1.17
103. Райчук Д.Ю. Аудиторная нагрузка ППС в свете мирового опыта // Высшее образование в России. 2016. № 1. С. 105–112. URL: https://vovr.elpub.ru/jour/article/view/362 дата обращения 01.05.2022).
104. Huda M., Jasmi K.A., Alas Y., Qodriah S.L., Dacholfany M.I., Jamsari E.A. Empowering civic responsibility: Insights from service learning // Engaged scholarship and civic responsibility in higher education. 2018. P. 144–165. DOI: 10.4018/978-1-5225-3649-9.CH007
105. Gerholz K.-H., Liszt V., Klingsieck K.B. Effects of learning design patterns in service learning courses. // Active Learning in Higher Education. 2018. Vol. 19. No. 1. P. 47–59. DOI: 10.1177/1469787417721420
106. Обучение служением: Метод. пособие / Под ред. О.В. Решетникова, С.В. Тетерского. М. : АВЦ, 2020. 216 с. URL: https://minobrnauki.gov.ru/files/Metodicheskoe_posobie_Obuchenie_ sluzheniem.pdf (дата обращения: 01.05.2022).
107. Горбунова Е.В. Адаптация студентов 1–3 курсов бакалавриата/специалитета к университетской жизни // Universitas. Журнал о жизни университетов. 2013. Т. 1. № 1. С. 48–64.