“Digital Confucian”: Normative Foundations of the Philosophy of Digital Education
https://doi.org/10.31992/0869-3617-2025-34-12-146-157
Abstract
The digital transformation of education is changing not only the organizational forms of learning but also the mechanisms of shaping human agency, the methods of coordinating actions, and the normative foundations of pedagogical interaction between teacher and student. The article proposes the “Digital Confucian” analytical framework as a conceptual lens designed to harmonize the individual with the environment of algorithmic communication. The analysis is built on the integration of three theoretical perspectives: the phenomenology of embodiment, cosmotechnics, and Confucian ethics. The use of the cosmotechnical approach allows us to consider digital infrastructure as an active element of the pedagogical process, shaping its own normative logic. The concept of the digital Confucian helps to understand how, under conditions of algorithmic normativity, human agency as a responsible member of society can be maintained and reproduced. In conclusion, the possibilities of applying this analytical framework to develop pedagogical strategies capable of preserving ethical coherence in the digital educational environment are discussed.
Keywords
About the Authors
E. D. DryaevaРоссия
Ella D. Dryaeva – Cand.Sci. (Philosophy), Associate Professor of the Department of Social Philosophy and Philosophy of History, Faculty of Philosophy,
1 Leninskie Gory, bldg. 1, Moscow, 119991.
I. A. Kanaev
Китай
Ilya A. Kanaev – Cand.Sci. (Philosophy), Postdoctor, Researcher at the Collaborative Innovation Center of Confucian Civilization,
27, Shanda Nanlu, Shandong, 250100, Jinan.
References
1. Hui, Y. (2021). Art and Cosmotechnics. Minneapolis: University of Minnesota Press. 240 p. ISBN: 9781517909543.
2. Nikolsky, V.S. (2025). Communicative Artificial Intelligence: Conceptualization of a New Reality in Education. Vysshee obrazovanie v Rossii = Higher Education in Russia. Vol. 34, no. 6, pp. 152-168, doi: 10.31992/0869-3617-2025-34-6-152-168 (In Russ., abstract in Eng.).
3. Karneev, R.R. (2025). Subject Reassembly and Subjective Membrane: Philosophical Understanding of Education in the Neural Network Era. Vysshee obrazovanie v Rossii = Higher Education in Russia. Vol. 34, no. 6, pp. 136-151, doi: 10.31992/0869-3617-2025-34-6-136-151 (In Russ., abstract in Eng.).
4. Hui, Y. (2016). The Question Concerning Technology in China: An Essay in Cosmotechnics. Falmouth: Urbanomic. 352 p. ISBN: 978-0-9954550-0-9.
5. Merleau-Ponty, M. (1999). Phenomenology of Perception. Eds. I.S. Vdovina, S.L. Fokin. St. Petersburg: Juventa; Nauka. 605 p. ISBN: 5-88230-056-5. (In Russ.).
6. Tu, W. (1985). Confucian Thought: Selfhood as Creative Transformation. Albany, NY: SUNY Press. 165 p. ISBN: 9780887060052.
7. Lukyanov, A.E., Yugay, V. (2003). Konfutsianskii traktat “Chzhun Yun” [Confucian Treatise “Zhong Yong”]. Ed. and trans. A.E. Lukyanov. Moscow: Vostochnaya Literatura. 248 p. ISBN: 5-02-018325-3. (In Russ.).
8. Ihde, D. (2009). Postphenomenology and Technoscience: The Peking University Lectures. Albany, NY: SUNY Press. 102 p. ISBN: 978-1438426228.
9. Stiegler, B. (1998). Technics and Time, 1: The Fault of Epimetheus. Stanford, CA: Stanford University Press. 316 p. ISBN: 978-0804730419.
10. Zuboff, S. (2022). Epokha nadzornogo kapitalizma: Bitva za chelovecheskoe budushchee na novykh rubezhakh vlasti [The Age of Surveillance Capitalism: The Battle for Humanity’s Future on the New Frontiers of Power]. Moscow: Gaidar Institute Publishers. 784 p. ISBN: 978-5-93255-613-9. (In Russ.).
11. Koshkina, E.A., Bordovskaya, N.V., Gnedyh, D.S., Khromova, M.A., Demyanchuk, R.V., Iskhakova, M.P., Balyshev, P.A. (2025). Generative AI in Higher Education: Overview of Theoretical Approaches and Practices. Vysshee obrazovanie v Rossii = Higher Education in Russia. Vol. 34, no. 6, pp. 36-57, doi: 10.31992/0869-3617-2025-34-6-36-57 (In Russ., abstract in Eng.).
12. Kuzminov, Y.I., Kruchinskaya, E.V., Gruzdev, I.A., Naumov, A.A. (2025). Lagging Behind and Outpacing: How Students Use Generative AI in Educational Purposes. Vysshee obrazovanie v Rossii = Higher Education in Russia. Vol. 34, no. 6, pp. 9-35, doi: 10.31992/0869-3617-202534-6-9-35 (In Russ., abstract in Eng.).
13. Nguyen A., Ngo H.N., Hong Y., Nguyen B.-P.T. (2023). Ethical Principles for Artificial Intelligence in Education. Education and Information Technologies. Vol. 28, pp. 4221-4241, doi: 10.1007/s10639-022-11316-w
14. Bryzgalina, E.V. (2021). Artificial Intelligence in Education: An Analysis of Implementation Goals. Chelovek [Human]. Vol. 32, no. 2, pp. 9-2910.31857/S023620070014856-8 (In Russ., abstract in Eng.).
15. Mittelstadt, B.D., Allo, P., Taddeo, M., Wachter, S., Floridi, L. (2016). The Ethics of Algorithms: Mapping the Debate. Big Data & Society. Vol. 3, no. 2, doi: 10.1177/2053951716679679
16. Gallagher, S. (2005). How the Body Shapes the Mind. Oxford: Oxford University Press. 284 p. ISBN: 0199271941.
17. Chun, J. (2023). Confucius Interpreted by a Confucian: Feng Youlan’s Interpretations of the Analects. Living Confucianisms: Strategies for Optimizing Harmony. Rowman & Littlefield. Pp. 123-144. ISBN: 9781538181034.
18. Gong, Y., Lou, Y. (2020). Transforming a Public School: A Case Study of Tongji-Huangpu School of Design and Innovation and Its Search for Synergy. Doi: 10.21606/drs.2020.291
19. Jobin, A., Ienca, M., Vayena, E. (2019). The Global Landscape of AI Ethics Guidelines. Nature Machine Intelligence. Vol. 1, no. 9, pp. 389-399, doi: 10.1038/s42256-019-0088-2
20. Gasparyan, D.E., Turko, D.S., Besschetnova, E.V. (2023). Ethical Limits of AI Use: Cultural and Philosophical Analysis. Voprosy filosofii [Problems of Philosophy]. Vol. 6, pp. 61-74, doi: 10.21146/0042-8744-2023-9-93-102. (In Russ., abstract in Eng.).
21. Chiu, M.S. (2024). Teachers’ Opinions toward Implementing Affect-Focused Mathematics Teaching in Real and Virtual Classrooms. Education and Information Technologies. Vol. 29, no. 18, pp. 24653–24676, doi: 10.1007/s10639-024-12846-1
22. Zhu, J. (2024). AI Ethics with Chinese Characteristics? AI & Society. Vol. 39, pp. 1261-1274, doi: 10.1007/s00146-022-01578-w
23. Kong, X., Fang, H., Chen, W., Xiao, J., Zhang, M. (2025). Examining Human–AI Collaboration in Hybrid Intelligence Learning Environments: Insight from the Synergy Degree Model. Humanities and Social Sciences Communications. Vol. 12, article no. 821, doi: 10.1057/s41599025-05097-z
24. Zemtsov, D.I., Gruzdev, I.A. (2025). The Digital Centaur: Human–AI Co-Learning in University Education. Vysshee obrazovanie v Rossii = Higher Education in Russia. Vol. 34, no. 10, pp. 47-62, doi: 10.31992/0869-3617-2025-34-10-47-62 (In Russ., abstract in Eng.).
25. Wang, J., Fan, W. (2025). The Effect of ChatGPT on Students’ Learning Performance, Learning Perception, and Higher-Order Thinking: Insights from a Meta-Analysis. Humanities and Social Sciences Communications. Vol. 12, no. 1, pp. 1-21, doi: 10.1057/s41599-025-04787-y
26. Lam, C.-M. (2025). Building Ethical Virtual Classrooms: Confucian Perspectives on Avatars and VR. Computers & Education: X Reality. Vol. 6, article no. 100092, doi: 10.1016/j.cexr.2024.100092
27. Holstein, K., Aleven, V., Rummel, N. (2020). A Conceptual Framework for Human-AI Hybrid Adaptivity in Education. Artificial Intelligence in Education. Vol. 1, pp. 240-254, doi: 10.1007/978-3-030-52237-7_20
28. Dong, L., Tang, X., Wang, X. (2025). Examining the Effect of Artificial Intelligence in Relation to Students’ Academic Achievement in Classroom: A Meta-Analysis. Computers and Education: Artificial Intelligence. Vol. 8, article no. 100400, doi: 10.1016/j.caeai.2025.100400
29. Cho, C., Ofosu-Anim, D. (2024). Navigating the Technology Divide: The Role of Educational Leadership in Generative AI Usage among Diverse Age Groups. Open Journal of Leadership. Vol. 13,pp. 515-531, doi: 10.4236/ojl.2024.134027
30. Kanaev, I.A., Dryaeva, E.D. (2024). Artificial Intelligence: Prospects for Consciousness Emergence. Voprosy filosofii [Problems of Philosophy]. Vol. 11, pp. 38-50, doi: 10.21146/0042-87442024-11-38-50
Review
JATS XML























